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1 Introduction

After the 2007–2008 financial crisis, the revision of the regulatory framework of financial

intermediaries has become a central topic under discussion by regulators and academics.

The Basel III accord has tightened the restrictions imposed on banks by previous regulation

and has introduced new tools to reduce the likelihood and depth of financial crises. One of

the key sets of rules at the center of this debate is capital requirements, namely, limits on

the fraction of debt that banks can use to finance their investment.

According to the Modigliani and Miller (1958) theorem, it is irrelevant whether a firm is

financed with debt, equity, or a mix of the two. Admati and Hellwig (2013) use this result

as a starting point for their analysis of bank regulation. They argue that capital require-

ments should be raised substantially to eliminate the moral hazard induced by government

guarantees and the implicit too-big-to-fail subsidies, and some regulators have made a case

for similar rules.1 The typical argument against this suggestion is that banks are “special”

because their liabilities are valued not only for their pecuniary return but also for their

“liquidity’’ value, violating a key Modigliani-Miller assumption. Under this view, it is not

desirable to impose large capital requirements that reduce the supply of banks deposits.

In this paper, we propose an alternative channel that reduces the desirability of high

capital requirements. This channel is related to the role of banks as suppliers of safe assets

and is different—though complementary—to the typical transaction role of deposits. In our

model, the demand for safe assets comes from entrepreneurs who have access to projects

that are socially valuable but whose return is subject to idiosyncratic, uninsurable risk. It

is this idiosyncratic risk that gives raise to a demand for safe assets—or, more precisely, for

assets whose return does not correlate with the entrepreneurs’ projects.

A crucial result of our model is that the return on safe assets interacts with entrepreneurs’

willingness to pursue risky, socially-valuable projects. The idiosyncratic shocks to the return

on entrepreneurs’ projects create volatility in entrepreneurs’ own wealth. Because of this
1See the Minneapolis Plan discussed by Kashkari (2016).
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volatility, entrepreneurs reduce their investment in the projects in comparison to an economy

without idiosyncratic shocks. In this context, a higher return on safe assets provides a source

of stable income that reduces the volatility of entrepreneurs’ wealth. This effect encourages

entrepreneurs to take on more risk, increasing their demand for labor and the scale of their

idiosyncratic projects. Vice-versa, a lower return on safe assets reduces entrepreneurial

activity. We call this channel “good risk taking” because the projects are socially valuable

but not fully exploited due to the lack of insurance against idiosyncratic risk.

We think of the entrepreneurs in our model as small, privately-owned firms. Such firms

are not included in standard datasets, such as Compustat, because they do not issue equity

or file with the SEC; as such, they are under-represented in the finance literature relative to

publicly-traded firms. However, privately-owned firms account for more than half of total

domestic non-government employment in the US.2 Thus any force affecting employment in

this sector can have large effects on aggregate output and employment.

We highlight a new cost of capital requirements: they reduce the good risk taking of

entrepreneurs. If the government provides subsidized deposit insurance, the subsidy in-

creases the risk-adjusted return on deposits. Since deposits are safe assets demanded by

entrepreneurs for insurance purposes, the higher return promotes good risk taking by en-

trepreneurs according to the channel explained above. As a result, capital requirements that

limit deposit insurance disbursements and reduce the return on deposits also reduce good

risk taking, and produce a negative impact on growth and welfare. The optimal level of

capital requirements trades off this effect with the benefit of reducing the “bad” risk taking

of banks, that is, the moral hazard of deposit insurance.

Our general message is that financial regulation has an impact on the real economy by

changing the risk-taking capacity of the non-financial sector, and that this channel should

be accounted for when studying optimal regulation. Because of this motivation, we focus on

deposit insurance and capital requirements due to their primary role in banking regulation,
2We arrive at this figure by dividing total employment at firms in the Compustat database by total private

employment from the BLS each year and taking the average from 1950–2016.
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and we abstract from other policies that might enhance entrepreneurs’ risk-taking but are

unrelated to the financial sector. In this sense, we follow a common approach in the literature

that studies capital requirements and motivates deposit insurance because of its role in

preventing runs, as in Diamond and Dybvig (1983), but does not model explicitly this feature.

More generally, deposits insurance in our model can also be interpreted as any government

guarantee on bank debt, such as the Temporary Liquidity Guarantee Program set up by the

Federal Deposit Insurance Corporation (FDIC) in 2008.

We first derive our results using some simplifying assumptions that keep our model

tractable and allow us to isolate our channel from other effects. In particular, even if id-

iosyncratic shocks create heterogeneity across entrepreneurs’ wealth, the equilibrium in our

model depends only on average wealth, and the other moments of the distribution are irrel-

evant. We also assume that the government finances the shortages of the deposit insurance

funds with taxes that do not create any distortions in entrepreneurs’ decisions. We then

plan to extend the paper by providing a quantitative analysis and assessing the magnitude

of the good risk-taking channel.

2 Literature Review

This paper is part of a growing literature that studies capital requirements using macroe-

conomic models with a financial sector. Several papers employ quantitative models, such

as Begenau (2016), Begenau and Landvoigt (2017), Corbae and D’Erasmo (2014), Chris-

tiano and Ikeda (2013), Davydiuk (2017), Dempsey (2017), Gertler, Kiyotaki and Prestipino

(2016), Nguyễn (2014), and van den Heuvel (2008).

A related paper by Elenev, Landvoigt and van Nieuwerburgh (2017) studies the effect

of increasing the price of mortgage guarantee offered by government-sponsored enterprises

(GSEs). While they focus on a different policy, we share with them the idea that regulation

and subsidies to the financial sector can have an impact on wealth distribution.
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Our approach for modeling entrepreneurs’ risk builds on Quadrini (2017), who also em-

phasizes the role of bank liabilities for insurance purposes.3 However, his focus is different

because he studies how various forces affect banks’ risk taking and crises, without focusing

on entrepreneurs’ risk taking.

Our paper is also related to the literature that studies financial intermediaries as suppliers

of safe assets, such as Diamond (2016), Magill, Quinzii and Rochet (2016), and Stein (2012).

This literature builds on the ideas of Dang et al. (2017) and Gorton and Pennacchi (1990),

in which the debt of banks is riskless to enhance its liquidity value or to overcome an

informational friction. Bank debt is valuable in our model for a related but slightly different

reason: there is a demand for securities that are uncorrelated with the idiosyncratic risk of

entrepreneurs. Policies that increase the increase the supply of such securities also increase

entrepreneurs’ risk-taking capacity.

3 Model

3.1 Environment

Time is discrete and infinite and there is a single good that can be consumed or used for

investment. There are four types of players in the economy: agents (entrepreneurs), banks,

laborers, and the government.

3.1.1 Agents

Agents have log utility and discount the future at a rate β < 1. Agents live forever and and

choose consumption to maximize their expected discounted stream of utility:

U i = E
∞∑
t=0

βt log cit. (1)

3The approach used by Quadrini (2017) at modeling entrepreneurs’ risk builds on Arellano, Bai and
Kehoe (2011).
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Agents hire workers and produce output equal to zit+1l
i
t, where zit+1 is the firm’s produc-

tivity and lit is their labor input. zit+1 is an idiosyncratic productivity shock that is realized

after agents choose their labor input lit. Agents can invest in deposits dit that pay an interest

rate Rd
t , and in bank’s equity ni

t that earns a (stochastic) return RE
t+1; their budget equation

is

cit + dit + ni
t = xi

t,

where xi
t is their total wealth at time t. Agent i’s wealth xi

t evolves as

xi
t+1 = (1− τt+1)

[(
zit+1 − wt

)
lit +Rd

t d
i
t +RE

t+1n
i
t

]

where τt+1 is a tax levied by the government to pay back depositors at failed banks.

Agents choose their investments in bonds, equity, and labor before knowing their own

idiosyncratic productivity draw zit+1 or the realization of the return on equity RE
t+1. However,

the government provides full deposit insurance, so deposits are safe and Rd
t is known in

advance. The wage wt is also known at time t when lit is chosen.

A note on timing and notation: all variables indexed with a t subscript are known to

agents at the beginning of time t when they make decisions. Thus for the agent the only

unknowns are their own productivity zit+1, the return on equity RE
t+1, and the tax rate τt+1.

These random variables depend on future aggregate productivity At+1, described below.

Agent’s idiosyncratic output zit+1l
i
t depends on productivities and occurs at the beginning of

period t+ 1, immediately after the shocks are realized.
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The above assumptions lead to the following Bellman equation for agent i:

Vt

(
xi
t

)
= max

cit,d
i
t,n

i
t,l

i
t≥0

log cit + βEtVt+1

(
xi
t+1

)
s.t.

cit + dit + ni
t = xi

t

xi
t+1 = (1− τt+1)

[(
zit+1 − wt

)
lt +Rd

t d
i
t +RE

t+1n
i
t

]

where the t subscript on the value function incorporate all aggregate information at time t,

including the distribution of wealth xi
t across agents. As we show below in Proposition 1,

the wealth distribution will not enter into agents’ optimal decisions, a key result that keeps

our model tractable. This result stems from our assumption of log utility, and from the fact

that the agents’ problem exhibits constant returns to scale.

The assumption that the government taxes agents in proportion to agents’ wealth xi
t,

rather than lump-sum or on project income
(
zit+1 − wt

)
lit, allows us to isolate our channel

from other effects. The combination of log utility and proportionality to wealth implies

that agents’ investment and labor-demand choices are independent of the level of the tax,

as we show below, similar to the way lump-sum taxes work in other classes of models.4

Moreover, a tax on project income would have a direct effect on agents’ labor demand and

would smooth the return on entrepreneurs’ projects – the tax would be paid by entrepreneurs

with successful projects, but not by those with unsuccessful projects. This channel would

create a further effect that reduces entrepreneurs risk above and beyond that of deposit

insurance and capital requirements. Because our goal is to understand the effects of capital

requirements themselves, we have chosen to pay for deposit insurance in the model with a

non-distortionary tax on wealth. We conjecture that a tax on income would lead to even

stronger effects.
4We do not use lump-sum taxes because they would make agents’ decisions dependent on their own

wealth, thereby eliminating the tractability advantages of log utility.
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3.1.2 Banks

Banks live for a single period; that is, a bank set up at time t is liquidated at the beginning

of time t + 1. At the beginning of period t they have total equity nt and have access to a

decreasing-returns-to-scale technology which produces output equal to At+1εk
α
t , where At+1

is aggregate productivity, ε ≥ 0 is a bank-specific idiosyncratic shock realized at t + 1, and

kt is the physical capital invested in by the bank. ε is an idiosyncratic shock, so we have

that E {ε} = 1. Banks finance any investment in kt beyond their own equity capital nt by

borrowing from agents at Rd
t . Banks face a capital requirement that limits their ability to

raise deposits; formally, their equity ratio nt/kt must be weakly larger than some number ζ.

The banker’s problem is

max
kt,dt

Et

∫ {
At+1εk

α
t −Rd

t dt

}+

dF (ε)

s.t.

kt = dt + nt (2)
nt

dt + nt

≥ ζ

nt given

where the constraint in ζ reflects the capital requirement, {·}+ = max {·, 0} is the positive

part of bank’s profits, F (·) is the CDF of banks’ idiosyncratic productivity shocks, and the

expectation is taken over the distribution of At+1. Banks that receive a low value of the

productivity shock ε, such that At+1e
σεkα

t < Rd
t dt, do not pay back their depositors; these

deposits are guaranteed by the government.

When firms invest in bank’s equity, they invest in a mutual fund that diversifies over the

idiosyncratic shocks ε. Thus investments in bank equity are exposed to the aggregate risk in

At+1 and to the fraction of banks that default in equilibrium. The realized return on equity
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is given by

RE
t+1 =

1

nt

∫ {
At+1εk

α
t −Rd

t dt

}+

dF (ε) . (3)

Equation (3) implies that εt+1, the highest value of ε at which banks default on their depos-

itors, is implicitly defined as a function of At+1:

Rd
t dt = At+1εt+1k

α
t . (4)

3.1.3 Government

The government taxes agents’ wealth xi
t+1 at a rate τt+1 in order to ensure that depositors

at failed banks at the beginning of t + 1 are made whole. The government seizes output

at failed banks (who return zero to their equity-holders) to partially defray the expenses

of paying back depositors, but its recovery efforts are subject to a deadweight loss that is

quadratic in the amount of output to be collected.

The total amount of tax to be collected is

Tt+1 =

∫  Rd
t dt︸︷︷︸

owed to depositors

− At+1εk
α
t︸ ︷︷ ︸

collected from banks


+

dF (ε) +
λ

2

[∫ εt+1

−∞
At+1εk

α
t dF (ε)

]2

︸ ︷︷ ︸
deadweight loss

where the parameter λ in the second term indexes the extent of deadweight losses in the

economy. Then the tax rate on wealth τt+1 satisfies

τt+1 =
Tt+1∫ [(

zit+1 − wt

)
lit +Rd

t d
i
t +RE

t+1n
i
t

]
di

(5)

where the denominator is aggregate pre-tax wealth across all agents i. τt+1 depends on the

realization of the aggregate shock At+1, which affects both the realized return on equity and

the fraction of banks that default in equilibrium.
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3.1.4 Laborers

Laborers live for a single period and are hand-to-mouth; they choose consumption ct and

labor supply lt to solve

max
ct,lt

ct − ν1
l
1+ 1

ν2
t

1 + 1
ν2

(6)

subject to the budget constraint

ct = wtlt.

3.2 Equilibrium Definition

Given exogenous stochastic processes for the aggregate productivity At and zit, equilibrium

is a collection of firm policies, bank policies, and government taxes such that

1. Agents’ choices for labor demand lit, deposits dit, equity investment ni
t, and consumption

cit maximize their utility (1);

2. Banks’ choices for capital kt and deposits dt solve their problem (2),

3. Bank profits are returned to agents holding bank equity through the return on equity

given in equation (3);

4. The government taxes agents in proportion to their wealth and uses the proceeds to

pay depositors at failed banks according to equation (5).

5. Laborers’ labor supply is consistent with maximizing their utility (6).

6. The wage wt and the return on deposits Rd
t clear the labor and deposit markets,

respectively.
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4 Results

We begin our analysis of the model by showing that entrepreneurs’ choices can be easily

aggregated despite the heterogeneity in their wealth (Section 4.1). We then present our

main result about the effects of capital requirements on the good risk-taking channel of

entrepreneurs (Section 4.3); to clarify the exposition, we set the deadweight loss of default

to zero (i.e., λ = 0) so that we can ignore the more standard bad risk-taking channel of

banks. We then consider a version of the model where both the good and bad risk-taking

channels are at work and capital requirements trade off these two effects (Section 5).

4.1 Entrepreneurs’ and laborer’ choices, and aggregation

The following proposition greatly simplifies the analysis by allowing us to aggregate easily

across entrepreneurs.

Proposition 1. Agent i’s optimal choices are given by

cit = (1− β)xi
t

lit = ϕtβx
i
t

ni
t = ytβx

i
t

dit = (1− yt) βx
i
t

where ϕt and yt are independent of xi
t and satisfy the following first-order conditions:

0 = Et

{
zit+1 − wt

∆i
t+1

}
(7)

0 = Et

{
RE

t+1 −Rd
t

∆i
t+1

}
(8)
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where

∆i
t+1 ≡

(
zit+1 − wt

)
ϕt + ytR

E
t+1 + (1− yt)R

d
t . (9)

Proof. See Appendix A.

A key result of Proposition 1 is that the tax rate τt+1 does not enter agents’ first-order

conditions. In addition, the total savings of entrepreneurs,
∫ [

dit + ni
t

]
di = dt + nt are a

constant fraction β of aggregate wealth Xt ≡
∫
xi
tdi, so that total investment by banks

kt = dt + nt is also a constant fraction of entrepreneurial wealth in equilibrium. Thus, for

a given Xt, the risk-shifting activity of banks due to deposit insurance affects their default

probability and the deposit and equity returns, but not the size of their balance sheet.

In the remainder of the paper, yt is the fraction of agents’ savings βxi
t devoted to bank

equity, and ϕt is their labor demand as a proportion to their savings.

Because agents’ choices are all proportional to their individual wealth xi
t, aggregates don’t

depend on the distribution of xi
t across agents. Thus aggregate labor demand is given by

Lt =

∫
litdi

=

∫
ϕtβx

i
tdi (10)

= ϕtβXt,

and aggregate wealth next period is

Xt+1 = (1− τt+1)
[
(z̄t+1 − wt)ϕt + ytR

E
t+1 + (1− yt)R

d
t

]
βXt (11)

where z̄t+1 is the average idiosyncratic shock across agents.

The first-order condition to the laborer’s problem (6) implies that the labor supply curve
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is given by

wt = ν1 (Lt)
1
ν2 . (12)

4.2 Capital requirements and bad risk taking

It is straightforward to show that the first-order condition to the bank’s problem (2) is given

by

αkα−1
t Et

{
At+1εt+1

∣∣εt+1 > εt+1

}
= Rd

t + ξ, (13)

where ξ is the Lagrange multiplier on the capital requirement constraint.

Equation (13) illustrates the bad risk-taking aspect of capital requirements. If the capital

requirement constraint does not bind, and banks have a positive probability of default, then

the expectation term on the left-hand-side of equation (13) must be strictly greater than

the expected value of At+1. Even though ε is an idiosyncratic shock, due to limited liability

bankers only consider future states in which they are solvent when they decide how much to

borrow and invest.

Suppose Rd
t were a fixed constant, as it would be in a model with risk-neutral investors

such as the illustrative model of Davydiuk (2017). In order for equation (13) to be satisfied,

bankers need to increase their investment in kt relative to what a social planner would choose.

Moreover, as Davydiuk (2017) makes clear, the degree of overinvestment depends in part on

the state of the business cycle, through the distribution of future aggregate productivity

At+1. However, capital requirements can overcome this inefficiency by making the constraint

bind, increasing the value of ξ until banks choose the desired level of investment kt.

In our model, Proposition 1 implies that the level of bank investment kt is pinned down

by agents’ savings behavior, which is a constant fraction of aggregate wealth Xt. In this

case, when the capital requirement does not bind, equation (13) is satisfied by increasing the
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value of Rd
t in equilibrium. Banks would like to over-invest due to limited liability and their

positive default probability, but in equilibrium their attempts to do so only raise the return

on deposits. Increasing capital requirements in our economy will reduce the deposit return

Rd
t , but will not affect total savings or bank investment.

However, the fact that capital requirements in our model only affect Rd
t in equilibrium

does not mean that they have no real effects. In our model, changing the return on deposits

does not increase savings in bank deposits or equity; these are a constant fraction of wealth,

according to Proposition 1. However, changing the return on deposits does affect the labor

demand of agents in equilibrium, through equations (7) and (9). In fact, as we show in the

next section, the “distorted” return on deposits in equation (13) is a “good” distortion, in

that it raises total output by inducing agents to take more idiosyncratic risks, and higher

capital requirements reduce this “good” risk taking.

4.3 Capital requirements and good risk taking

In this section, we provide our main results about the effects of capital requirements on good

risk taking by entrepreneurs. To clarify the exposition, we focus on the simple case in which

aggregate productivity is constant (i.e., At = A for all t) and there are no deadweight losses

associated with bank default (i.e., λ = 0). Because of the assumption of constant At, we can

focus on a steady state in which all aggregate variable are constant as well.

We first present the effects of capital requirements on aggregate wealth Xt and agents’

consumption in Proposition 2, and then we turn to welfare in Proposition 3. We distinguish

between two cases: constant zit+1 and stochastic zit+1.

Proposition 2. Suppose λ = 0 and At+1 = A is not random. Then if zit+1 is a known

constant for all t and all i, changing the capital requirement ζ has no effect on aggregate

wealth Xt and agents’ consumption. On the other hand, if zit+1 is random, increasing ζ when

the capital requirement constraint binds reduces aggregate wealth Xt and agents’ consumption

in steady-state.
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Proof. See Appendix A.

Proposition 2 characterizes the real effects of capital requirements, in the way they affect

agents’ idiosyncratic risk-taking. Capital requirements force banks to hold more equity,

which reduces their default probability in equilibrium. But because λ = 0, the level of bank

default is irrelevant: a reduction in bank defaults reduces the amount that the government

must tax agents to pay for deposit insurance, but this reduction in the tax is exactly offset

by a reduction in the return to deposits (and to bank equity).

Thus if agents face no idiosyncratic risk, capital requirements have no real effects. How-

ever, when agents face idiosyncratic productivity shocks, the reduction in the return on

deposits has the effect of increasing the risk agents face: the risks in their idiosyncratic labor

income have not changed, but the share of their income from safe bank deposits has gone

down. Because agents are risk-averse, they reduce their labor demand in response. This

lowers aggregate output and steady-state wealth, making agents worse off.

Figure 1 illustrates the basic mechanism in the model. The top panel plots the equilib-

rium in the deposit market, where the red line and blue lines plot equations (3) and (8),

respectively, in the
(
Rd, RE

)
plane. Because there is no aggregate risk, equation (8) implies

that RE = Rd and therefore the red line is a 45-degree line in the
(
RE, Rd

)
plane. On

the other hand, by equation (3) it must be that RE is decreasing in Rd from the bank’s

perspective, which gives the blue curves in the top panel of Figure 1.

Increasing the capital requirement ζ does not affect the link between RE and Rd implied

by entrepreneurs’ first-order condition (8), but it changes the return on equity payed by

banks. Thus, the red line in the top panel of Figure 1 is unchanged, whereas the blue line

shifts from the solid to the dotted one. To see this, rewrite equation (3) as

RE =
1

n

∫ {
Aεkα −Rdd

}+

dF (ε)

=
1

ζ

∫ ∞

ε

[
Aεkα−1 − (1− ζ)Rd

]
dF (ε)
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Figure 1. Equilibrium in the Asset and Labor Markets
The top panel plots the equilibrium in the asset market. The x- and y-axes
are the returns on deposits Rd and equity RE, respectively. The red line plots
equation (8) and the blue lines plot equation (3) for two binding values of ζ. The
dotted blue line represents a higher, binding value of ζ than the solid blue line.
The bottom panel plots the equilibrium in the labor market. The red line plots
the labor-supply curve (12), while the blue lines plot the labor-demand curve (7)
for a fixed value of X. The solid blue line plots labor demand for one value of
Rd, while the dotted line plots labor demand for a lower value of Rd.
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where the second line plugs in the constraints n/k = ζ and d = k − n = (1− ζ) k. Taking

the derivative of RE with respect to ζ yields

∂RE

∂ζ
= − 1

ζ2

∫ ∞

ε

[
Aεkα−1 −Rd

]
dF (ε) (14)

where there is no ∂ε/∂ζ term because the integrand in equation (3) is zero (by definition) at

ε. The sign of the derivative in equation (14) can be either positive or negative, as shown in

the top panel of Figure 1, but it must be negative for values of Rd close to RE. This is the

content of Proposition 2. Intuitively, raising the capital requirement increases the number

of equity holders who must be paid out of bank profits, lowering RE, but it also reduces the

number of depositors who must be paid Rd. If Rd were very high, this second effect could

dominate and increasing ζ would increase RE; but this cannot occur in equilibrium where

RE = Rd.

The bottom panel of Figure 1 plots the equilibrium in the labor market. By equation (10),

labor demand depends both on aggregate agent wealth Xt as well as their proportional labor

choice ϕ, which solves equation (7) when RE = Rd by equation (8). It is straightforward to

show that ϕ = ∞ if w ≤ z, the lowest possible value of z, and that ϕ = 0 when w = E {z}, so

that in equilibrium w must lie between these two values. In addition, in equilibrium ϕ scales

with Rd, so that a decrease in Rd (such as the one plotted in the top panel of Figure 1)

lowers agents’ proportional labor demand ϕ in equilibrium. In turn, a lower value of ϕ,

combined with the fact that λ = 0 and thus no output is saved from the reduction in bank

defaults, implies a reduced steady-state value of Xt and thus lower labor demand and agents’

consumption.

Next, we show that tightening the capital requirement constraint reduces welfare. Before

presenting the results, we explain how we measure welfare, given that there are two dimen-

sions of heterogeneity: different wealth among entrepreneurs, and two classes of agents (i.e.,

entrepreneurs and laborers).
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Entrepreneurs are heterogenous because of the effects of productivity shocks on their

wealth accumulation. We define the welfare of entrepreneurs as their value function V (x)

evaluated at the average wealth in the economy in steady state, x = X. Formally, this

measure of welfare would arise in an economy in which all agents have the same wealth at

t = 0, xi
0 = X0, so that

∫
V (xi

0)di = V (X0), and X0 is initialized at the steady-state level.

Thus, this measure of welfare does not account for the effects of policy on the distribution of

wealth. A more general measure of welfare can be derived by extending the model to obtain a

well-defined stationary distribution of entrepreneurs’ wealth, and by integrating V (xi
0) with

respect to such a stationary distribution. If tightening capital requirements increases the

dispersion of wealth among entrepreneurs, our conclusions would be reinforced.

The fact that our model includes two classes of agents – entrepreneurs and laborers – does

not affect the welfare results of this section. We show that the welfare of both entrepreneurs

and laborers decreases when capital requirements are binding and they are tightened.

The next proposition formalizes the effects of capital requirements on welfare through

the good-risk taking channel, when we shut down the bad risk-taking channel by setting

λ = 0.

Proposition 3. Suppose λ = 0 and At+1 = A is not random. Then if zit+1 is a known

constant for all t and all i, changing the capital requirement ζ has no effect on welfare of

agents and laborers. On the other hand, if zit+1 is random, increasing ζ when the capital

requirement constraint binds reduces the welfare of both agents and laborers.

Proof. See Appendix A.

The results of Proposition 3 follows from those of Proposition 2. With no idiosyncratic

risk, Proposition 2 shows that capital requirements have no real effects, and thus welfare

must be unchanged. If instead agents are subject to idiosyncratic risk, the reduction in

steady-state value of Xt reduces welfare. Given that our measure of welfare is equivalent to

V (X0) with X0 initialized at the steady-state level of Xt, welfare moves one-for-one with Xt.
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5 Numerical Examples

In this section we explore two calibrated versions of the model, in order to illustrate how

capital requirements can balance the good risk-taking investments of entrepreneurs against

the bad risk-taking decisions of banks. In Section 5.1 we assume that the idiosyncratic bank

shock ε is log-normally distributed and that aggregate TFP A is constant. In this case

increasing capital requirements quickly reduces bank default probability, so that a relatively

low capital requirement quickly eliminates both costs and benefits of capital requirements.

Nevertheless we show that there is an optimal capital requirement for this model.

In section 5.2 we add an aggregate shock representing a financial crisis: in “normal”

times ε is a constant, but in ‘crisis” times ε takes one of two values for each bank. In this

case, only very high capital requirements can eliminate bank risk; but capital requirements

nevertheless reduces the good risk-taking of entrepreneurs and the deadweight loss from

banks’ bad risk-taking. We calibrate this “large-shock” model the Savings & Loan crisis of

the late 1980s and early 1990s and show that the implied optimal capital requirement is

much larger than for the continuous-shock model of Section 5.1.

5.1 Continuous-Shock Model

In this section we assume that the bank’s idiosyncratic shock ε is lognormally distributed.

We lightly abuse notation by replacing ε everywhere with exp
{
σε− 1

2
σ2
}

, where now ε is a

standard normal random variable.

We solve the model numerically, assuming that A is constant, ε is a standard normal

random variable, and that zit+1 is i.i.d. and can take two values, zH with probability p and

zL < zH with probability 1 − p. In this case, because there is no aggregate risk, there

is an aggregate steady-state in which all aggregate variables are constant, and only agent-

level wealth and productivity fluctuate. Thus in what follows we drop t subscripts where

convenient. See Appendix B for details on the computation of the model solution.
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With lognormal shocks, it can be shown (see equation 28 in Appendix B) that the agent’s

total return on savings is given by

yRE + (1− y)Rd︸ ︷︷ ︸
return on savings

= Akα−1
t

[
1− Φ {ε− σ}+ eσεΦ {ε}

]︸ ︷︷ ︸
deposit insurance subsidy

(15)

where ε is the idiosyncratic bank shock below which banks default. The top panel of Figure 2

plots the terms that depend on ε as a function of the default probability, Φ {ε} where Φ {·}

is the standard normal CDF, for various values of σ.

As can be seen in the top panel of Figure 2, the deposit insurance subsidy in equation (15)

is an increasing function of both the default probability and the amount of idiosyncratic

risk σ. Thus, increasing capital requirements (which, when binding, always reduce the

default probability of banks in this model) reduces the subsidy to savings that agents enjoy.

Even though this subsidy is paid for out of taxes on agents, the subsidy appears in agents’

first-order conditions (7) and (8), while the tax rate τ does not. This is the content of

Proposition 2; the top panel Figure 2 illustrates the size of this effect, as a multiple of

marginal bank output, for a range of values of the default probability and σ.

To further illustrate the workings of the model, we calibrate the model to match some

numerical targets and plot how steady-state wealth varies with capital requirements. Increas-

ing aggregate wealth is commensurate with increasing social welfare in this model because

higher aggregate wealth Xt leads to higher labor demand and thus higher wages wt; thus

both laborers and agents are strictly better off.

Panels A and B of Table 1 report the parameter values we used for this exercise, as well

as the numerical targets we chose. We set the Frisch elasticity ν2 to be very high to keep the

wage from responding too much “against” the agents; fr low values of ν2, most adjustment

to capital requirements occurs in wages rather than in the quantity of labor, and the effects

on output are small.

Even though this is just a numerical example, we want to comment on our choice of
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Figure 2. Continuous-Shock Model
The top panel plots the deposit insurance subsidy as a function of the default
probability Φ {ε} from equation (15) for various values of σ ranging from 0.03
to 0.25. The bottom panel plots steady-state aggregate wealth Xt, in percent
deviations from the no capital requirement equilibrium (ζ = 0), as a function of
the capital requirement ζ for values of the deadweight-loss parameter λ ranging
from 0 to 15. The percentages reported in the bottom-left corner of the lower
panel are the deadweight loss as a percentage of GDP. The parameters used for
these calculations are reported in Table 1, panels A and B.
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Panel A: Common Parameters
Parameters Value

β 0.95
ν2 100
zH A
zL 0

Pr
{
z = zH

}
0.70

Panel B: Continuous Bank Shocks
Parameters Value Target Target Value

α 0.98
A 0.5651 Steady-State X 1.053
δ 0.5370 Unconstrained Default Probability Φ

{
εt+1

}
10%

σ 0.077 Unconstrained Capital Ratio y 10%
ν1 0.359 Deposit Premium 1

β
−Rd 2%

Panel C: Large Bank Shocks
Parameters Value Target Target Value

pc 1% Financial Crisis Probability 1%
s 8.9% Share of Bank Failures in S&L Crisis 8.9%
A 1.032 Steady-State X 1.053
α 0.99989 Unconstrained Capital Ratio y 10%
ν1 0.6612 Deposit Premium 1

β
−Rd 2%

γ 0.66 Tax/GDP during Financial Crisis 1.7%

Table 1. Numerical Example Parameter Values
The table reports the parameter values used in Figures 2 and 3. Panel A re-
ports parameters common across both the continuous-shock and the large-shock
models. These parameters are not set to match any targets. Panel B reports
parameters for the continuous-shock model along, with the calibration targets
for each parameter (apart from α, which is set without a target). Panel C re-
ports the parameters used for the large-shock model along with the corresponding
calibration targets.
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α. Since the production function of banks does not include labor, the parameter α can be

interpreted as the degree of decreasing return to scale for banks’ assets. With this in mind,

our choice is in line with the value of 0.85 used by Midrigan and Xu (2014). In addition,

plugging equation (30) into (34) and rearranging reveals that the default probability of banks

must be greater than 1− α. Thus to keep the default probability at a low level, we keep α

relatively high.

In order to ease the calibration, for this model we allow bank assets to not depreciate

fully; that is, we replace the banker’s objective in equation (2) with

max
kt,dt

Et

∫ {[
At+1k

α
t + (1− δ) kt

]
ε−Rd

t dt

}+

dF (ε) , (16)

where δ is the rate at which bank capital depreciates. Equation (16) assumes that the

idiosyncratic bank shock hits both bank output At+1k
α
t as well as underpreciated capital

(1− δ) kt; in that sense, ε is more like a “capital-quality” shock than a productivity shock.

Panel B of Table 1 reports the parameters that were chosen to match numerical targets

for the continuous-shock model. We set ν1 to match a deposit premium 1/β −Rd of 2%. ν1

primarily affects the deposit premium in equilibrium by reducing the level of wages; holding

agent productivity fixed, lower wages mean that the idiosyncratic project income makes up

a larger share of agent income, which means that the return on deposits (and equity) must

be lower in order for next period’s aggregate wealth to equal this period’s aggregate wealth

(steady-state).

We choose σ in order to match a bank default probability of 10%. Given all other

parameters and their targets, we vary A and δ until the unconstrained bank first-order

condition (13) leads to a 10% capital ratio, and steady-state aggregate wealth Xt is 1/β. We

choose this particular value of steady-state unconstrained aggregate wealth for numerical

convenience.

The bottom panel of Figure 2 plots steady-state aggregate wealth Xt as a function of
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capital requirements for various values of the deadweight-loss parameter λ ranging from 0

to 15. Capital requirements less than 10% do not bind and thus have no effect on aggregate

wealth. As shown in Proposition 2, when λ = 0 capital requirements only deter good risk-

taking and reduce aggregate wealth.

When λ > 0, bank defaults entail a deadweight loss and capital requirements can be

valuable in reducing this deadweight loss. Then the optimal capital requirement balances a

reduced deadweight loss with the costs associated with lower labor demand from agents.We

show this effect in the bottom panel of Figure 2, where the box in the bottom left corner

report the deadweight loss as a percentage of GDP when the capital requirement is zero.

As λ goes up, potential deadweight loss increases, and capital requirements can avert this

deadweight loss. Higher values of λ imply a higher optimal capital requirement, although

the optimum is never very far from the unconstrained value of 10%.

5.2 Large-Shock Model

In this section we replace the lognormal shocks of the model in section 5.1 with “large”

shocks; that is, now we assume that ε takes one of two values:

εt+1 ∼

 γ probability pt+1

1−γpt+1

1−pt+1
probability 1− pt+1

,

where pt+1 is itself random, taking one of two possible values:

pt+1 ∼

 0 probability 1− pc

s probability pc

.

In this model, with probability 1 − pc we are in “normal” times and no banks will default.

However, with a very low probability pc, banks are subjective to an idiosyncratic shock, and

a fraction s of them will only produce a fraction γ of their output. The remaining banks will
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produce somewhat more, in order for the shock to remain idiosyncratic (that is, E {ε} = 1).

We interpret this model set-up as representing infrequent but large banking crises: agents

do not know how many (or if any) banks will fail next period, but there is always a possibility

of disaster. In addition, because we have assumed that pt+1 is iid over time, aggregate wealth

Xt will be the only aggregate state variable in this economy.

Notice also that in this model, capital requirements that are far from 1−γ will not affect

the probability of bank default, which remains at pt+1. Only if banks have enough capital

so that

y > 1− γ
Akα−1

t

Rd
t

(17)

will banks survive receiving the low value of ε. If capital requirements are high enough that

equation (17) is satisfied, then the default probability of banks will be zero; otherwise, it will

be pt+1.

As in the model of section 5.1, we solve this model numerically, assuming constant A,

using the parameters reported in Panels A and C of Table 1. Our calibration targets in this

case are chosen to match some features of the Savings & Loan Crisis (S&L) of the late 1980s

and early 1990s, in which over a third of savings & loans covered by the Federal Savings &

Loan Insurance Corporation (FSLIC) failed.

We set s = 8.9%, in order to match the fraction of banks that defaulted during the S&L

crisis. We arrive at this figure by including the 1,043 of 3,324 S&Ls that failed during the

crisis (Curry and Shibut 2000) and a default probability of 2.6% that applied to the roughly

12,000 FDIC-insured banks at the time.5 We set pc = 1%. We set α in order to keep the

unconstrained bank capital ratio at 10%, as in the model of section 5.1. Finally, we set the
5The FDIC figures come from the FDIC Historical Statistics on Banking, available at

https://www5.fdic.gov/hsob/SelectRpt.asp?EntryTyp=10&Header=1. The calculation is then

s =
1, 043 + 2.6%× 12, 000

3, 324 + 12, 000
≈ 8.9%
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bad-shock output value γ in order to match the total cost of the S&L crisis that was borne

by taxpayers, as a share of GDP. According to General Accounting Office (1996), this was

roughly 1.7% of GDP.6

It is straightforward to show in this model that the total return on agents’ savings is

given by

ytR
E
t+1 + (1− yt)R

d
t (18)

= At+1k
α−1
t + pt+1

[
(1− yt)R

d
t − γAt+1k

α−1
t

]
︸ ︷︷ ︸

deposit insurance subsidy

,

where yt is the share of their wealth that agents invest in bank equity. As in equation (15),

when the bank default probability is zero the total return on savings is the equal to the total

return on bank assets, irrespective of how much equity or debt agents hold. This is true even

when At+1 is risky; giving agents access to a riskless asset through deposit insurance has

no effect in equilibrium because they hold both the debt and the equity of banks. On the

other hand, when pt+1 is positive, deposit insurance is a subsidy to agents that increases the

return on their savings. Although this subsidy will be paid for with taxes on their wealth,

it affects real output by increasing agents’ “good” risk taking in their idiosyncratic project.

Figure 3 plots steady-state aggregate wealth Xt for this model, in percentage deviations

from the no capital requirements case, as a function of capital requirements and for various

values of λ ranging from 0 to 3. When λ = 0, there are no deadweight losses from bank

default and thus no benefit to higher capital requirements; capital requirements only reduce

the savings subsidy, and with it, agents’ investment in labor. Output and wealth fall as

capital requirements increase, until the capital requirement is high enough (around ζ = 34%)

that banks that receive the low value of ε have enough capital that they do not default.

At higher values of λ, capital requirements above the unconstrained capital ratio of 10%

are helpful in reducing deadweight losses from bank default. The percentages in the lower
6$132 billion; US nominal GDP in 1995 was roughly $7.66 trillion.
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Figure 3. Large-Shock Model
The top panel reports the steady-state aggregate wealth Xt, in percent deviations
from the no capital requirement equilibrium (ζ = 0), as a function of the capital
requirement ζ for values of the deadweight-loss parameter λ ranging from 0 to
3. The percentages reported in the bottom-left corner of the lower panel are
the total tax (and not just the deadweight loss) as a percentage of GDP. The
parameters used for these calculations are reported in Table 1, panels A and C.
The bottom panels repeats the same calculations but changes the values of ν1 to
0.7119, α to 0.99988, and γ to 0.6978, which allows the model to match a deposit
premium of 1% but still match the other targets given in Table 1, panel C.
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left corner of the top panel of Figure 3 report the total tax, as a percentage of output, borne

by agents in the crisis state. Higher values of λ increase this tax, but for all values considered

in Figure 3 the tax is still very close to the 1.7% of GDP calibration value.7 As λ increases,

the optimnal capital requirement rises, to roughly 27% for λ = 3 (green line).

Notice that in this model, 99% of the time there are no bank failures and the government

does not tax agents at all. Aggregate wealth Xt changes every period, but because the crisis

shock is iid, agents’ decisions and all other endogenous aggregate variables are constant over

time. Although a banking crisis where a fraction s of banks onlty return γ happens with only

1% probability, agents fear that state and choose less labor because of it. Deposit insurance

acts to insure them against their own idiosyncratic risk: it raises the total return on their

savings (equation 18), but because the tax is proportional to their wealth, the cost of this

subsidy is borne more by agents whose projects are successful and earn the high value of z′.

This indirect insurance on their idiosyncratic risk induces agents to take on more “good”

risks in equilibrium, and increase aggregate output even though the taxes and insurance only

materialize 1% of the time.

The bottom panel of Figure 3 repeats the same exercise, but re-calibrates the model to

match a deposit premium 1/β−Rd of 1%, rather than the baseline of 2% in panel C of Table 1.

We match the deposit premium by varying the level of wages, though the intercept of the

labor-supply curve ν1. Increasing average wages reduces the value of agents’ indiosyncratic

projects, which in steady-state brings the deposit return closer to the rate of time preference

1/β. To continue to match the other calibration targets in panel C of Table 1, we also change

α (the degree of decreasing returns to scale in banks’ assets) and γ (output at bad banks

during the crisis).

Reducing the value of the idiosyncratic labor projects reduces the cost of capital require-

ments, but not the benefits: in the bottom panel of Figure 3, there is less output lost when

λ = 0, and more output gained when λ > 0, at every value of (binding) capital require-
7This is why we set γ to match the total tax borne by agents, and not λ. Finding an appropriate data

moment to which we can calibrate λ is a challenge for this model.
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ments. The optimal capital requirement for each level of λ > 0 increases, and in fact the lost

output from setting capital requirements higher than the optimum os almost zero. For this

calibration, the cost of setting capital requirements “too high” is virtually zero. Thus the

value of the deposit premium to which we calibrate the model is crucial for understanding

the costs of capital requirements in this model.

6 Conclusion

We propose a new channel through which capital requirements affect the aggregate economy

by changing the volatility of the savings of entrepreneurs. Higher capital requirements reduce

the returns on banks liabilities, which increase the volatility of entrepreneurs’ savings and

induce them to reduce their labor demand in equilibrium, lowering output and consumption.

Optimal capital requirements balance the reduction in output from this “good” risk-taking

channel with a reduced deadweight loss from bank default, a standard “bad” risk-taking

channel.

Our analysis thus far has been qualitative, but we plan to extend the paper to assess

quantitatively the magnitude of the good risk-taking channel. We have purposefully con-

structed the model to maintain tractability for any stochastic process for the productivities

At+1 and zit+1, including making At+1 persistent. This is important because, as shown for

example by Davydiuk (2017), optimal capital requirements may be time-varying either be-

cause first-best investment varies with the state of the business cycle, or because the extent

of excessive bank risk-taking does (or both).
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A Proofs

Proof of Proposition 1

To ease notation we remove all t subscripts, and put a prime ′ on variables that are random

at time t. The agent’s problem can written recursively as

V (x;Z) = max
c,d,n,l≥0

log c+ βE
{
V
(
x′;Z ′)}

s.t. (19)

c+ d+ n = x

x′ =
(
1− τ ′

) [(
z′ − w

)
l +Rdd+RE′n

]

where Z =
[
A,

{
xj
}
j

]′
is a vector containing aggregate productivity A and the wealth of

all agents j, and the expectation is taken over the distribution of z′ and Z ′. The variables

w and Rd are known when the agent chooses c, d, n, and l, but RE′ and τ ′ depend on the

realized values of Z ′.

We guess and verify that the value function takes the form V (x;Z) = b log x+ f (Z) for

some function f and constant b. Rewrite the agent’s choice variables in terms of s = d+ n,

n = ys, and ϕ = l/s, so that d = (1− y) s and log x′ = log (1− τ ′) + log∆′ + log s, where

∆′ is defined in equation (9). Then plugging in the guess for the form of the value function,

the first-order condition for s yields

1

x− s
= βbE

1

s

∴ s =
βb

1 + βb
x

from which it follows from the budget constraint that c = 1
1+βb

x. This leads directly to the

first-order conditions for ϕ and , y, equations (7) and (8), which are independent of x. To
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verify the guess, plug the optimal policies and the guess into equation (19) to obtain

b log x+ f (z, Z) = log
[
(1− β)x

]
+ βE

{
b log

(
1− τ ′

)
+ b log∆′ + b log [βx] + f

(
z′, Z ′)}

= log x+ βb log x+ terms independent of x

so that b = 1 + βb and therefore b = 1
1−β

, which verifies the guess and completes the proof.

Proof of Proposition 2

First suppose that zit+1 is a known constant for all t. If z is not random, then equation (31)

reduces to z = w, and agents are completely indifferent to any level of ϕt. Total labor is

then pinned down by equation (12) in order to make the wage equal the value of z.

Wealth evolution becomes

xi
t+1 = (1− τt+1)

[
yRE

t+1 + (1− yt)R
d
t

]
βxi

t. (20)

Since λ = 0, equation (5) can be rearranged to yield

1− τt+1 = 1−
∫ {

Rd
t dt − At+1εk

α
t

}+
dF (ε)[

ytRE
t+1 + (1− yt)Rd

t

]
β
∫
xi
tdi

(21)

∴ (1− τ)
[
ytR

E
t+1 + (1− yt)R

d
t

]
= ytR

E
t+1 + (1− yt)R

d
t −

1

βXt

∫ {
Rd

t dt − At+1εk
α
t

}+

dF (ε)

= ytR
E
t+1 + (1− yt)R

d
t −Rd (1− y)F

(
εt+1

)
+ At+1 (βXt)

α−1

∫ εt+1

−∞
εdF (ε) .

where εt+1 is defined in equation (4) and we have used the fact that in the aggregate kt =

31



st = βXt and dt = (1− yt) βXt. Meanwhile, we have using equation (3) that

ytR
E
t+1 + (1− yt)R

d
t = At+1 (βXt)

α−1

∫ ∞

εt+1

eσεdF (ε)−
[
1− F

(
εt+1

)]
(1− yt)R

d
t + (1− yt)R

d
t

= At+1 (βXt)
α−1

∫ ∞

εt+1

eσεdF (ε) + F
(
εt+1

)
(1− yt)R

d
t , (22)

which plugging into equation (21) yields

(1− τ)
[
ytR

E
t+1 + (1− yt)R

d
t

]
= At+1 (βXt)

α−1

∫ ∞

−∞
εdF (ε)

so that equation (20) becomes

xi
t+1 =

[
At+1 (βXt)

α−1

∫ ∞

−∞
εdF (ε)

]
βxi

t

= At+1 (βXt)
α−1 βxi

t,

where the second line uses the fact that E {ε} = 1.

This implies that both individual and aggregate wealth growth, and through it the dy-

namics of consumption and welfare, are unaffected by any policy that changes y or εt+1.

Thus a capital requirement that changes the return on the agents’ wealth by affecting εt+1

(equation 22) has an exactly offsetting effect on taxes levied by the government to repay

depositors at failed banks.

Now suppose that zit+1 is random. In this case, wealth evolution is given by

xi
t+1 = (1− τt+1)

[(
zit+1 − wt

)
ϕt + yRE

t+1 + (1− yt)R
d
t

]
βxi

t. (23)

=

[(
zit+1 − wt

)
ϕt + At+1 (βXt)

α−1

]
βxi

t

where the last line plugs in equations (3) and (5) after including the agent’s idiosyncratic

project income
(
zit+1 − wt

)
ϕt. It is apparent from equation (23) that equity investment yt
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and the default threshold εt+1 do not affect the growth rate of wealth directly. Instead, we

will show that increasing ζ when the capital requirement binds reduces steady-state Xt and

the growth rates of individual wealth.

To show this, by equation (23) it suffices to show that the effect of increasing ζ is to reduce(
zit+1 − wt

)
ϕt. This immediately reduces the growth rate of xi

t, since individual agents take

Xt as given, but it also reduces steady-state Xt because α < 1; this can be seen by integrating

equation (23) over i and solving for steady-state X.

The rest of the proof proceeds as follows: first, we show that increasing ζ reduces εt+1

when the capital requirement binds; then, we show that reducing εt+1 reduces agent’s labor

project income
(
zit+1 − wt

)
ϕt.

Now because At+1 is a constant, it must be that RE
t+1 and Rd

t are also constants; and

from equation (8) it must be that RE = Rd. Thus plugging equation (4) into equation (22)

and rearranging yields

yRE + (1− y)Rd = R =
At+1εt+1 (βXt)

α−1

1− ζ

= At+1 (βXt)
α−1

∫ ∞

εt+1

εdF (ε) + F
(
εt+1

)
At+1εt+1 (βXt)

α−1

∴ εt+1

1− ζ
=

∫ ∞

εt+1

εdF (ε) + F
(
εt+1

)
εt+1 (24)

where we have assumed that yt = ζ binds. Totally differentiating equation (24) yields

1

1− ζ
dεt+1 +

εt+1

(1− ζ)2
dζ = −εt+1f

(
εt+1

)
dεt+1 + f

(
εt+1

)
εt+1dεt+1 + F

(
εt+1

)
dεt+1

= F
(
εt+1

)
dεt+1

∴ dεt+1

dζ
= εt+1

[
(1− ζ)2

(
F
(
εt+1

)
− 1

1− ζ

)]−1

≤ 0

where f (·) ≡ F ′ (·) is the pdf of ε, and the last line must be less than zero since the range

of F is [0, 1] because it is a CDF, ζ < 1, and εt+1 ≥ 0 since the support of ε is [0,∞). Thus
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increasing the capital requirement ζ weakly reduces the default threshold εt+1.

Now rewrite equation (22) as

ytR
E
t+1 + (1− yt)R

d
t = At+1 (βXt)

α−1

∫ ∞

εt+1

εdF (ε) + F
(
εt+1

)
(1− yt)R

d
t

= At+1 (βXt)
α−1

∫ ∞

−∞
max

{
ε, εt+1

}
dF (ε)

which is clearly an increasing function of εt+1. Thus increasing ζ not only lowers εt+1, but

this also lowers the agent’s portfolio return yRE + (1− y)Rd.

Because RE = Rd, we can rewrite equation (7) as

0 = E

{
z′ − w

(z′ − w)ϕ+Rd

}
, (25)

which must have a unique solution for ϕ because the objective is globally concave. Thus if

ϕ solves equation (25), it must be that Rd and ϕ move in the same proportion (holding w

fixed). Thus a decrease in Rd is a reduction in the labor-demand curve of agents (see the

lower panel of Figure 1). Because the labor-supply curve (12) is upward-sloping, w also falls

in equilibrium but nevertheless, it must be that agents choose a lower value of ϕt at the

higher ζ.

As before, because λ = 0 the reduction in the returns to bank equity and deposits is

exactly offset by a reduction in τt+1; however, there is no force that offsets the reduction in

agents’ labor demand.

Proof of Proposition 3

The result that welfare does not change without idiosyncratic shocks follows as a corollary

of Proposition 2. In this case, capital requirements have no real effects, and thus welfare is

unchanged.

With idiosyncratic shock, recall that our measure of welfare of entrepreneurs is defined

34



as V (Xt), where Xt is the steady-state value of average wealth. From Proposition 2, Xt

decreases in response to an increase in ζ when the capital requirement constraint is bind-

ing. Since V (·) is strictly increasing as shown in the proof of Proposition 1, welfare of

entrepreneurs decreases.

Next, consider laborers. Their welfare is given by (6). Plugging their budget constraint

and the first-order condition in (12) into the objective function in (6), and rearranging, we

obtain that their welfare is

ν1
l
1+ 1

ν2

1 + ν2

which is increasing in l. As shown in Proposition 2, an increase in ζ and a binding capital

requirement implies a reduction in ϕt and Xt, and, from Proposition 1, of lt, so that the

welfare of laborers decreases too.

B Solution Method

B.1 Continuous-Shock Model

In this section we replace ε in all formulas with the lognormal reparameterization eσε, where

ε ∼ N {0, 1}.8 We also replace the banker’s problem (2) with (16). Thus, equation (4)

becomes

Rd
t dt =

[
At+1k

α
t + (1− δ) kt

]
eσεt+1

∴ Rd
t =

[
At+1 (βXt)

α−1 + 1− δ
]
eσεt+1

1− yt
(26)

∴ σεt+1 = logRd
t − log

[
At+1 (βXt)

α−1 + 1− δ
]
+ log (1− yt)

8Alternatively, we could assume that ε ∼ N
{
− 1

2σ
2, σ2

}
, and replace ε with eε. We find the notation in

the text to be the clearest exposition, since in that case Φ {·} is the standard normal CDF. However, this
notation does result in e

1
2σ

2 terms popping up in several places.
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where the second line uses the fact that in equilibrium kt = dt + nt = st = βXt and

dt = (1− yt) st = (1− yt) βXt. Equation (26) defines a relation between εt+1 and the

realized value of At+1; when At+1 is higher, εt+1 is lower (fewer banks default). The values

of Xt, Rd
t , and yt are set at t, before At+1 and εt+1 are realized; thus taking differences of the

last line of equation (26) for any two values of At+1, say A∗ and A, and rearranging yields

εt+1 = ε∗t+1 −
1

σ

(
log

[
A (βXt)

α−1 + 1− δ
]
− log

[
A∗ (βXt)

α−1 + 1− δ
])

. (27)

Thus to solve for an equilibrium (given aggregate wealth Xt), we need only solve for the

single value εt+1 that solves equation (26) when At+1 = A∗; the other default thresholds

then follow from equation (27).

In what follows we assume that ε ∼ N (0, 1). Then using the fact that

∫ b

a

eσεdΦ {ε} = e
1
2
σ2 [

Φ {b− σ} − Φ {a− σ}
]

where Φ {·} is the standard normal CDF, we have that equation (3) becomes

RE
t+1 =

∫∞
εt+1

[(
At+1k

α
t + (1− δ) kt

)
eσε −Rd

t dt

]
dΦ {ε}

nt

=

[
At+1 (βXt)

α + (1− δ) βXt

]
e

1
2
σ2
(
1− Φ

{
εt+1 − σ

})
−Rd

t (1− yt) βXt

(
1− Φ

{
εt+1

})
ytβXt

=
1

yt

[(
At+1 (βXt)

α−1 + 1− δ
)
e

1
2
σ2
(
1− Φ

{
εt+1 − σ

})
−Rd

t (1− yt)
(
1− Φ

{
εt+1

})]

so that

ytR
E
t+1 + (1− yt)R

d
t =

(
At+1 (βXt)

α−1 + 1− δ
)
e

1
2
σ2
(
1− Φ

{
εt+1 − σ

})
+ (1− yt)R

d
tΦ

{
εt+1

}
(28)
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and

RE
t+1 −Rd

t =
1

yt

[(
At+1 (βXt)

α−1 + 1− δ
)
e

1
2
σ2
(
1− Φ

{
εt+1 − σ

})
−Rd

t

(
1− (1− yt) Φ

{
εt+1

})]
. (29)

Plugging equations (26), (28) and (29) into the agents’ first-order conditions (7) and (8)

yields

0 = Et


(
At+1 (βXt)

α−1 + 1− δ
)(

e
1
2
σ2
(
1− Φ

{
εt+1 − σ

})
− 1−(1−yt)Φ{εt+1}

1−yt
eσεt+1

)
(zt+1 − wt)ϕt +

(
At+1 (βXt)

α−1 + 1− δ
)[

e
1
2
σ2
(
1− Φ

{
εt+1 − σ

})
+ eσεt+1Φ

{
εt+1

}]


(30)

and

0 = Et


zt+1 − wt

(zt+1 − wt)ϕt +
(
At+1 (βXt)

α−1 + 1− δ
)[

e
1
2
σ2
(
1− Φ

{
εt+1 − σ

})
+ eσεt+1Φ

{
εt+1

}]
 .

(31)
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The tax rate τt+1 from equation (5) becomes

τt+1 =

∫ εt+1

−∞

[
Rd

t dt −
(
At+1k

α
t + (1− δ) kt

)
eσε

]
dΦ {ε}

+λ
2

[∫ εt+1

−∞

(
At+1k

α
t + (1− δ) kt

)
eσεdΦ {ε}

]2[
(z̄ − wt)ϕt + ytRe

t+1 + (1− yt)Rd
t

]
st

=

Rd
t (1− yt) βXtΦ

{
εt+1

}
−

(
At+1 (βXt)

α + (1− δ) βXt

)
e

1
2
σ2
Φ
{
εt+1 − σ

}
+λ

2

[(
At+1 (βXt)

α + (1− δ) βXt

)
e

1
2
σ2
Φ
{
εt+1 − σ

}]2[
(z̄ − wt)ϕt + ytRe

t+1 + (1− yt)Rd
t

]
βXt

(32)

=

(
At+1 (βXt)

α−1 + 1− δ
)(

eσεt+1Φ
{
εt+1

}
− e

1
2
σ2
Φ
{
εt+1 − σ

})
+λ

2
1

βXt

(
At+1 (βXt)

α + (1− δ) βXt

)2 [
e

1
2
σ2
Φ
{
εt+1 − σ

}]2
(z̄ − wt)ϕt +

(
At+1 (βXt)

α−1 + 1− δ
)[

e
1
2
σ2
(
1− Φ

{
εt+1 − σ

})
+ eσεt+1Φ

{
εt+1

}]

where z̄ is the average realized value of zit+1 across agents, so that the denominator in

the first line of equation (32) is realized pre-tax wealth, and the last line plugs in equa-

tions (26) and (28).

Finally, the banker’s first-order condition from solving (2), if the capital constraint does

not bind, is given by

0 = Et

{(
αAt+1k

α−1
t + 1− δ

)
e

1
2
σ2
(
1− Φ

{
εt+1 − σ

})
−Rd

t

(
1− Φ

{
εt+1

})}

∴ Rd
t = e

1
2
σ2

α [βXt]
α−1Et

{
At+1

(
1− Φ

{
εt+1 − σ

})}
+ (1− δ)Et

{
1− Φ

{
εt+1

}}
Et

{(
1− Φ

{
εt+1

})} (33)

where the expected value is taken at time t over the distribution of At+1, and the second

line uses the fact that in equilibrium kt = dt + nt = st = βXt. If the capital constraint does

bind, then equation (33) no longer applies (it contains a Lagrange multiplier that appears

nowhere else) and instead we have that yt = ζ.

To solve for an equilibrium in this economy, fix a value of aggregate wealth Xt and ε∗t+1.
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Then the values of εt+1 in the other N potential At+1 states are pinned down by equation (27).

Then so long as the capital requirement does not bind, plug equation (33) into equation (26)

to get

1− yt =

eσεt+1−
1
2
σ2
(
αAt+1 (βXt)

α−1 + 1− δ
)
Et

{(
1− Φ

{
εt+1

})}
α [βXt]

α−1Et

{
At+1

(
1− Φ

{
εt+1 − σ

})}
+ (1− δ)Et

{
1− Φ

{
εt+1

}} (34)

from which we can compute yt. We then solve equation (31) for ϕt; given this value, we

verify that the first-order condition (30) holds. We search over ε∗t+1 on a grid from −4 to 4

until all three equilibrium conditions (26), (30), and (31) hold.

If the capital constraint binds, that is the yt we compute from this procedure is lower

than ζ, then we fix yt = ζ rather than using equation (34). Then we proceed as before,

solving equation (31) for ϕt and then verifying that the first-order condition (30) holds. We

can repeat this entire procedure for various values of Xt, computing the implied tax rate

τt+1 from equation (32) and checking whether the assumed Xt is a steady-state.

B.2 Large-Shock Model

Assuming that banks that receive the low value of ε default, equation (3) becomes

ytR
E
t+1 = (1− pt+1)

[
At+1k

α−1
t

1− pt+1γ

1− pt+1

− (1− yt)R
d
t

]

so that the agents’ portfolio return is

ytR
E
t+1 + (1− yt)R

d
t = At+1k

α−1
t (1− pt+1γ) + (1− yt)R

d
t

[
1− (1− pt+1)

]
= At+1k

α−1
t (1− pt+1γ) + pt+1 (1− yt)R

d
t (35)
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which yields equation (18). The excess return on equity can be written as

1

yt

[
ytR

E
t+1 − ytR

d
t

]
=

1

yt

[
At+1k

α−1
t (1− pt+1γ)− (1− pt+1) (1− yt)R

d
t − ytR

d
t

]
=

1

yt

[
At+1k

α−1
t (1− pt+1γ)−

[
1− pt+1 (1− yt)

]
Rd

t

]
. (36)

The numerator in equation (5) is given by

Tt+1 = pt+1

[
(1− yt)R

d
t − γAt+1

]
βXt +

λ

2

(
pt+1

[
(1− yt)R

d
t − γAt+1

]
βXt

)2

where we have plugged in that kt = βXt.

To solve this model for a given value of aggregate wealth Xt, we solve for Rd
t assuming

the capital requirement doesn’t bind using the bank’s first-order condition (13):

Rd
t = αA (βXt)

α−1E
{
ε|ε > γ

}
= αA (βXt)

α−1

(
1− pc + pc

1− γs

1− s

)

Given this Rd
t , we search over values of yt in [0, 1], plugging in equation (35) into equation (7)

and solving for ϕ numerically, and then using this value of ϕ to evaluate equation (8), plugging

in equation (36). We continue untul we find a value of yt that satisfies equation (8).

If the implied yt < ζ, then this cannot be an equilibrium because the capital requirement

binds. In this case, we know that yt = ζ, and that Rd
t must be lower than the unconstrained

case. We thus search over Rd
t , rather than yt, but repeat the same procedure: we solve for

ϕ numerically using equation (7), using yt = ζ and the guessed value of Rd
t , and then use

the implied value of ϕ to evaluate equation (8). We repeat the entire procedure for different

values of Xt until we find a steady-state.

However, if in equilibrium it turns out that

A (βXt)
α−1 γ > (1− yt)R

d
t ,
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then defaulting banks have enough capital so that even when they receive the bad shock,

they can still pay their depositors. In this case, banks never default, there are no taxes raised,

and no deposit insurance subsidy. In this case we replace pt+1 in equations (35) and (36)

with zero and continue as described in the previous paragraph.
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